Pandemic(epidemic) modeling, aiming at disease spreading analysis, has always been a popular research topic especially following the outbreak of COVID-19 in 2019. Some representative models including SIR-based deep learning prediction models have shown satisfactory performance. However, one major drawback for them is that they fall short in their long-term predictive ability. Although graph convolutional networks (GCN) also perform well, their edge representations do not contain complete information and it can lead to biases. Another drawback is that they usually use input features which they are unable to predict. Hence, those models are unable to predict further future. We propose a model that can propagate predictions further into the future and it has better edge representations. In particular, we model the pandemic as a spatial-temporal graph whose edges represent the transition of infections and are learned by our model. We use a two-stream framework that contains GCN and recursive structures (GRU) with an attention mechanism. Our model enables mobility analysis that provides an effective toolbox for public health researchers and policy makers to predict how different lock-down strategies that actively control mobility can influence the spread of pandemics. Experiments show that our model outperforms others in its long-term predictive power. Moreover, we simulate the effects of certain policies and predict their impacts on infection control.
translated by 谷歌翻译
给定数千种同样准确的机器学习(ML)模型,用户如何在其中选择?最近的ML技术使领域专家和数据科学家能够为稀疏决策树生成完整的Rashomon设置,这是一套几乎最理想的可解释的ML模型。为了帮助ML从业者识别具有此Rashomon集合中理想属性的模型,我们开发了Timbertrek,这是第一个交互式可视化系统,该系统总结了数千个稀疏决策树的规模。两种用法方案突出了Timbertrek如何使用户能够轻松探索,比较和策划与域知识和价值观保持一致的模型。我们的开源工具直接在用户的计算笔记本和Web浏览器中运行,从而降低了创建更负责任的ML模型的障碍。Timbertrek可在以下公共演示链接中获得:https://poloclub.github.io/timbertrek。
translated by 谷歌翻译
基于文本的人检索的核心问题是如何弥合多模式数据之间的异质差距。以前的许多方法,用于学习以\ textbf {交叉模式分布共识预测(CDCP)}方式学习潜在的常见歧管映射范式。当将某个模态分布到公共歧管中的映射特征时,相反模态的特征分布是完全不可见的。也就是说,如何实现跨模式分布共识,以便将多模式特征嵌入和对齐构建的跨模式公共歧管中,这完全取决于模型本身的经验,而不是实际情况。通过这种方法,不可避免的是,多模式数据在共同的歧管中不能很好地对齐,这最终导致了次优的检索性能。为了克服此\ textbf {CDCP困境},我们提出了一种称为lbul的新颖算法,以学习基于文本的人检索的一致的跨模式公共歧管(C $^{3} $ M)。正如中文的谚语所说,我们方法的核心思想是``\ textit {san si er hou xing}',即\ textbf {thee thee thee thee thee you lap leak(lbul)}。 LBUL的常见歧管映射机制包含一个看起来的步骤和跳跃步骤。与基于CDCP的方法相比,LBUL考虑了视觉和文本方式的分布特征,然后将数据从某种模式嵌入到C $^{3} $ M中以获得更固体的交叉模式分布共识,从而获得了优质检索准确性。我们对两个基于文本的人检索数据集Cuhk-Pedes和RSTPREID评估了建议的方法。实验结果表明,所提出的LBUL胜过先前的方法,并实现了最新的性能。
translated by 谷歌翻译
给定自然语言描述,基于文本的人检索旨在从大规模人物图像数据库中识别目标人的图像。现有方法通常面对\ textbf {颜色过度盟军问题},这意味着在匹配跨模式数据时,模型在很大程度上依赖颜色信息。实际上,颜色信息是检索的重要决策,但是对颜色的过度依赖会分散模型从其他关键线索(例如纹理信息,结构信息等)中分散注意力,从而导致了次优的检索表现。为了解决这个问题,在本文中,我们建议\ textbf {c} apture \ textbf {a} ll-round \ textbf {i} nformation \ textbf {b} eyond \ textbf {c} olor(c} olor( )通过用于基于文本的人检索的共同优化的多分支体系结构。 CAIBC包含三个分支,包括RGB分支,灰度(GRS)分支和颜色(CLR)分支。此外,为了以平衡和有效的方式充分使用全方位信息,采用了相互学习机制来启用三个分支,这些分支可以参与信息的各个方面,以相互交流和学习。进行了广泛的实验分析,以评估我们在\ textbf {有监督}和\ textbf {弱监督}基于文本的人检索的\ textbf {pertexbf {pertegbf {pertegbf {cuhk-pedes和rstpreid数据集上的提议的CAIBC方法,这表明CAIBC显着超过现有的方法和现有方法。在这三个任务上实现最先进的性能。
translated by 谷歌翻译
能够从图形数据中学习表示形式的图形神经网络(GNNS)自然适合对分子系统进行建模。这篇综述介绍了GNN及其对小有机分子的各种应用。GNNS依靠消息通用操作(一种通用而强大的框架)来迭代更新节点功能。许多研究设计GNN体系结构,以有效地学习2D分子图的拓扑信息以及3D分子系统的几何信息。GNN已在各种分子应用中实施,包括分子属性预测,分子评分和对接,分子优化和从头产生,分子动力学仿真等。此外,综述还总结了最近的自我治疗学习的发展,用于带有GNN的分子。
translated by 谷歌翻译
有丝分裂细胞的描述是肿瘤诊断的关键特征。但是,由于有丝分裂细胞形态的变异性,检测肿瘤组织中有丝分裂细胞是一项高度挑战的任务。同时,尽管先进的深度学习方法在细胞检测方面取得了巨大成功,但从另一个域(即不同的肿瘤类型和不同的扫描仪)测试数据时,性能通常是不令人满意的。因此,有必要开发用于检测域中稳健性的有丝分裂细胞的算法。我们的工作进一步提出了基于基线(视网膜)的前景检测和肿瘤分类任务,并利用数据扩展来改善模型的域泛化性能。我们在具有挑战性的前测试数据集上实现了最先进的性能(F1分数:0.5809)。
translated by 谷歌翻译
机器学习(ML)可解释性技术可以揭示数据中的不良模式,这些模型模型开发以做出预测 - 一旦部署就会​​造成危害。但是,如何采取行动解决这些模式并不总是很清楚。在ML与人类计算机互动研究人员,医师和数据科学家之间的合作中,我们开发了GAM Changer,这是第一个互动系统,可帮助域专家和数据科学家轻松,负责任地编辑通用的添加剂模型(GAM)和修复有问题的模式。借助新颖的交互技术,我们的工具将可解释性置于行动中 - 使用户能够分析,验证和使模型行为与知识和价值相结合。医师已经开始使用我们的工具来调查和修复肺炎和败血症的风险预测模型,以及在不同领域工作的7位数据科学家的评估突出显示我们的工具易于使用,满足他们的模型编辑需求,并适合他们当前的工作流程。我们的工具以现代网络技术为基础,在用户的网络浏览器或计算笔记本电脑中本地运行,从而降低了使用的障碍。 GAM Changer可在以下公共演示链接中获得:https://interpret.ml/gam-changer。
translated by 谷歌翻译
随着机器学习(ML)系统变得越来越普遍,有必要在部署之前审核这些系统的偏见。最近的研究开发了算法,以有效地以可解释的,表现不佳的数据(或切片)的形式有效地识别相互偏见。但是,这些解决方案及其见解是有限的,而没有用于视觉理解和与这些算法结果相互作用的工具。我们提出了Visual Auditor,这是一种交互式可视化工具,用于审核和汇总模型偏差。视觉审核员通过提供可解释的交叉偏差概述(检查由多个功能定义的人群,有问题的数据切片之间的关系以及在模型中表现不佳和表现表现不佳之间的比较之间存在的详细信息)来协助模型验证。我们的开源工具直接在计算笔记本和Web浏览器中运行,使模型审核可访问并易于集成到当前的ML开发工作流中。一项与Fiddler AI的域专家合作的观察用户研究强调,我们的工具可以帮助ML实践者识别和理解模型偏见。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
具有相同任务的不同环境的概括对于在实际场景中成功应用视觉增强学习(RL)至关重要。然而,从高维观察中,视觉干扰(在真实场景中很常见)可能会对视觉RL中学习的表示形式有害,从而降低概括的性能。为了解决这个问题,我们提出了一种新颖的方法,即特征奖励序列预测(Cresp),以通过学习奖励序列分布(RSD)提取与任务相关的信息,因为奖励信号在RL中与任务相关,并且不变为Visual分心。具体而言,要通过RSD有效捕获与任务相关的信息,Cresp引入了一个辅助任务(即预测RSD的特征功能),以学习与任务相关的表示,因为我们可以很好地通过利用高维分布来实现高维分布相应的特征函数。实验表明,Cresp显着提高了在看不见的环境上的概括性能,在具有不同视觉分散注意力的DeepMind Control任务上表现优于几个最新的。
translated by 谷歌翻译